Analysis Beispiele

연쇄 법칙을 사용하여 미분 구하기 - d/dx x/(e^x)
Schritt 1
Diese Ableitung konnte mithilfe der Kettenregel nicht vervollständigt werden. Mathway wird eine andere Methode benutzen.
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Bringe auf die linke Seite von .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Stelle die Terme um.
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Multipliziere mit .
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Multipliziere mit .
Schritt 5.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.3
Forme den Ausdruck um.
Schritt 5.3.2.4
Dividiere durch .
Schritt 5.4
Wende das Distributivgesetz an.
Schritt 5.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.6
Mutltipliziere mit .
Schritt 5.7
Stelle die Faktoren in um.