Analysis Beispiele

Bestimme die x- und y-Achsenabschnitte y=x^3+3x^2+3x+2
Schritt 1
Bestimme die Schnittpunkte mit der x-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 1.2.2.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 1.2.2.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.3.1
Setze in das Polynom ein.
Schritt 1.2.2.3.2
Potenziere mit .
Schritt 1.2.2.3.3
Potenziere mit .
Schritt 1.2.2.3.4
Mutltipliziere mit .
Schritt 1.2.2.3.5
Addiere und .
Schritt 1.2.2.3.6
Mutltipliziere mit .
Schritt 1.2.2.3.7
Subtrahiere von .
Schritt 1.2.2.3.8
Addiere und .
Schritt 1.2.2.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 1.2.2.5
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
++++
Schritt 1.2.2.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
++++
Schritt 1.2.2.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
++++
++
Schritt 1.2.2.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
++++
--
Schritt 1.2.2.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
++++
--
+
Schritt 1.2.2.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
++++
--
++
Schritt 1.2.2.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
+
++++
--
++
Schritt 1.2.2.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
+
++++
--
++
++
Schritt 1.2.2.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
+
++++
--
++
--
Schritt 1.2.2.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
+
++++
--
++
--
+
Schritt 1.2.2.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
+
++++
--
++
--
++
Schritt 1.2.2.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
++
++++
--
++
--
++
Schritt 1.2.2.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
++
++++
--
++
--
++
++
Schritt 1.2.2.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
++
++++
--
++
--
++
--
Schritt 1.2.2.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
++
++++
--
++
--
++
--
Schritt 1.2.2.5.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 1.2.2.6
Schreibe als eine Menge von Faktoren.
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.2.5.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.2.5.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.5.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.3.1.2.1
Mutltipliziere mit .
Schritt 1.2.5.2.3.1.2.2
Mutltipliziere mit .
Schritt 1.2.5.2.3.1.3
Subtrahiere von .
Schritt 1.2.5.2.3.1.4
Schreibe als um.
Schritt 1.2.5.2.3.1.5
Schreibe als um.
Schritt 1.2.5.2.3.1.6
Schreibe als um.
Schritt 1.2.5.2.3.2
Mutltipliziere mit .
Schritt 1.2.5.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.5.2.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.4.1.2.1
Mutltipliziere mit .
Schritt 1.2.5.2.4.1.2.2
Mutltipliziere mit .
Schritt 1.2.5.2.4.1.3
Subtrahiere von .
Schritt 1.2.5.2.4.1.4
Schreibe als um.
Schritt 1.2.5.2.4.1.5
Schreibe als um.
Schritt 1.2.5.2.4.1.6
Schreibe als um.
Schritt 1.2.5.2.4.2
Mutltipliziere mit .
Schritt 1.2.5.2.4.3
Ändere das zu .
Schritt 1.2.5.2.4.4
Schreibe als um.
Schritt 1.2.5.2.4.5
Faktorisiere aus heraus.
Schritt 1.2.5.2.4.6
Faktorisiere aus heraus.
Schritt 1.2.5.2.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.5.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.5.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.5.2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.5.1.2.1
Mutltipliziere mit .
Schritt 1.2.5.2.5.1.2.2
Mutltipliziere mit .
Schritt 1.2.5.2.5.1.3
Subtrahiere von .
Schritt 1.2.5.2.5.1.4
Schreibe als um.
Schritt 1.2.5.2.5.1.5
Schreibe als um.
Schritt 1.2.5.2.5.1.6
Schreibe als um.
Schritt 1.2.5.2.5.2
Mutltipliziere mit .
Schritt 1.2.5.2.5.3
Ändere das zu .
Schritt 1.2.5.2.5.4
Schreibe als um.
Schritt 1.2.5.2.5.5
Faktorisiere aus heraus.
Schritt 1.2.5.2.5.6
Faktorisiere aus heraus.
Schritt 1.2.5.2.5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.5.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 1.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Bestimme die Schnittpunkte mit der y-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Entferne die Klammern.
Schritt 2.2.3
Entferne die Klammern.
Schritt 2.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.2.4.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.2.4.1.3
Mutltipliziere mit .
Schritt 2.2.4.1.4
Mutltipliziere mit .
Schritt 2.2.4.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.2.1
Addiere und .
Schritt 2.2.4.2.2
Addiere und .
Schritt 2.2.4.2.3
Addiere und .
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4