Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Mutltipliziere mit .
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.6
Addiere und .
Schritt 3
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Die Ableitung von nach ist .
Schritt 3.3
Ersetze alle durch .
Schritt 4
Schritt 4.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Vereinfache den Zähler.
Schritt 5.3.1
Vereinfache jeden Term.
Schritt 5.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.3.1.2.1
Bewege .
Schritt 5.3.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.1.2.3
Addiere und .
Schritt 5.3.1.3
Mutltipliziere mit .
Schritt 5.3.1.4
Mutltipliziere mit .
Schritt 5.3.2
Stelle die Faktoren in um.