Analysis Beispiele

x 구하기 2x-2x^-2=0
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.2
Kombiniere und .
Schritt 1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Bewege .
Schritt 3.2.1.1.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Potenziere mit .
Schritt 3.2.1.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.1.3
Addiere und .
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.3
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.1.2
Faktorisiere aus heraus.
Schritt 4.3.1.3
Faktorisiere aus heraus.
Schritt 4.3.2
Schreibe als um.
Schritt 4.3.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 4.3.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1.1
Mutltipliziere mit .
Schritt 4.3.4.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.4.2
Entferne unnötige Klammern.
Schritt 4.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Setze gleich .
Schritt 4.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.6.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.6.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.6.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1.2.1
Mutltipliziere mit .
Schritt 4.6.2.3.1.2.2
Mutltipliziere mit .
Schritt 4.6.2.3.1.3
Subtrahiere von .
Schritt 4.6.2.3.1.4
Schreibe als um.
Schritt 4.6.2.3.1.5
Schreibe als um.
Schritt 4.6.2.3.1.6
Schreibe als um.
Schritt 4.6.2.3.2
Mutltipliziere mit .
Schritt 4.6.2.4
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.