Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Forme um.
Schritt 1.2
Vereinfache durch Addieren von Nullen.
Schritt 1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Wende das Distributivgesetz an.
Schritt 1.4
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.4.1
Vereinfache jeden Term.
Schritt 1.4.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.1.2.1
Bewege .
Schritt 1.4.1.2.2
Mutltipliziere mit .
Schritt 1.4.1.3
Mutltipliziere mit .
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Mutltipliziere mit .
Schritt 1.4.1.6
Mutltipliziere mit .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2
Wende das Distributivgesetz an.
Schritt 2.1.3
Wende das Distributivgesetz an.
Schritt 2.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Mutltipliziere mit .
Schritt 2.2.1.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.3.1
Bewege .
Schritt 2.2.1.3.2
Mutltipliziere mit .
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.1.5
Mutltipliziere mit .
Schritt 2.2.1.6
Mutltipliziere mit .
Schritt 2.2.2
Addiere und .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3
Addiere und .
Schritt 3.4
Subtrahiere von .
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Addiere und .
Schritt 6
Schritt 6.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Schreibe um als plus
Schritt 6.1.3
Wende das Distributivgesetz an.
Schritt 6.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 6.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 6.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 6.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 7
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 8
Schritt 8.1
Setze gleich .
Schritt 8.2
Löse nach auf.
Schritt 8.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 8.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 8.2.2.1
Teile jeden Ausdruck in durch .
Schritt 8.2.2.2
Vereinfache die linke Seite.
Schritt 8.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.2.1.2
Dividiere durch .
Schritt 8.2.2.3
Vereinfache die rechte Seite.
Schritt 8.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Schritt 9.1
Setze gleich .
Schritt 9.2
Löse nach auf.
Schritt 9.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 9.2.2.1
Teile jeden Ausdruck in durch .
Schritt 9.2.2.2
Vereinfache die linke Seite.
Schritt 9.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 9.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.2.1.2
Dividiere durch .
Schritt 10
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: