Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Differenziere beide Seiten der Gleichung.
Schritt 1.2
Differenziere die linke Seite der Gleichung.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Schritt 1.2.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.1.3
Ersetze alle durch .
Schritt 1.2.2.2
Schreibe als um.
Schritt 1.2.3
Berechne .
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.2.4
Stelle die Terme um.
Schritt 1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 1.5
Löse nach auf.
Schritt 1.5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.5.2.1
Teile jeden Ausdruck in durch .
Schritt 1.5.2.2
Vereinfache die linke Seite.
Schritt 1.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2.2.1.2
Forme den Ausdruck um.
Schritt 1.5.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2.2.2.2
Dividiere durch .
Schritt 1.6
Ersetze durch .
Schritt 1.7
Berechne bei und .
Schritt 1.7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.7.3.1
Mutltipliziere mit .
Schritt 1.7.3.1.1
Potenziere mit .
Schritt 1.7.3.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.7.3.2
Addiere und .
Schritt 1.7.4
Vereinfache den Ausdruck.
Schritt 1.7.4.1
Potenziere mit .
Schritt 1.7.4.2
Mutltipliziere mit .
Schritt 1.7.5
Kürze den gemeinsamen Teiler von und .
Schritt 1.7.5.1
Faktorisiere aus heraus.
Schritt 1.7.5.2
Kürze die gemeinsamen Faktoren.
Schritt 1.7.5.2.1
Faktorisiere aus heraus.
Schritt 1.7.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.7.5.2.3
Forme den Ausdruck um.
Schritt 1.7.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Vereinfache .
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 2.3.1.3
Wende das Distributivgesetz an.
Schritt 2.3.1.4
Kombiniere und .
Schritt 2.3.1.5
Multipliziere .
Schritt 2.3.1.5.1
Mutltipliziere mit .
Schritt 2.3.1.5.2
Kombiniere und .
Schritt 2.3.1.5.3
Mutltipliziere mit .
Schritt 2.3.1.6
Bringe auf die linke Seite von .
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.2.3
Kombiniere und .
Schritt 2.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.5
Vereinfache den Zähler.
Schritt 2.3.2.5.1
Mutltipliziere mit .
Schritt 2.3.2.5.2
Subtrahiere von .
Schritt 2.3.3
Schreibe in -Form.
Schritt 2.3.3.1
Stelle die Terme um.
Schritt 2.3.3.2
Entferne die Klammern.
Schritt 3