Analysis Beispiele

Bestimme die Tangente an dem Punkt 2(x^2+y^2)^2=25(x^2-y^2) , (3,1)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere beide Seiten der Gleichung.
Schritt 1.2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4.3
Ersetze alle durch .
Schritt 1.2.5
Schreibe als um.
Schritt 1.2.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Wende das Distributivgesetz an.
Schritt 1.2.6.2
Stelle die Faktoren von um.
Schritt 1.3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.1.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.2.3
Ersetze alle durch .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.3.4
Schreibe als um.
Schritt 1.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1
Wende das Distributivgesetz an.
Schritt 1.3.5.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.2.1
Mutltipliziere mit .
Schritt 1.3.5.2.2
Mutltipliziere mit .
Schritt 1.3.5.3
Stelle die Terme um.
Schritt 1.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 1.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Forme um.
Schritt 1.5.1.2
Vereinfache durch Addieren von Nullen.
Schritt 1.5.1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.3.1
Wende das Distributivgesetz an.
Schritt 1.5.1.3.2
Wende das Distributivgesetz an.
Schritt 1.5.1.3.3
Wende das Distributivgesetz an.
Schritt 1.5.1.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.4.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.5.1.4.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.4.2.1
Bewege .
Schritt 1.5.1.4.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.4.2.2.1
Potenziere mit .
Schritt 1.5.1.4.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.5.1.4.2.3
Addiere und .
Schritt 1.5.1.4.3
Mutltipliziere mit .
Schritt 1.5.1.4.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.5.1.4.5
Mutltipliziere mit .
Schritt 1.5.1.4.6
Mutltipliziere mit .
Schritt 1.5.1.4.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.4.7.1
Bewege .
Schritt 1.5.1.4.7.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.4.7.2.1
Potenziere mit .
Schritt 1.5.1.4.7.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.5.1.4.7.3
Addiere und .
Schritt 1.5.1.4.8
Mutltipliziere mit .
Schritt 1.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.5.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.5.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.5.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.1
Faktorisiere aus heraus.
Schritt 1.5.4.2
Faktorisiere aus heraus.
Schritt 1.5.4.3
Faktorisiere aus heraus.
Schritt 1.5.4.4
Faktorisiere aus heraus.
Schritt 1.5.4.5
Faktorisiere aus heraus.
Schritt 1.5.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.1
Teile jeden Ausdruck in durch .
Schritt 1.5.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.2.1.2
Forme den Ausdruck um.
Schritt 1.5.5.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.2.2.2
Forme den Ausdruck um.
Schritt 1.5.5.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.2.3.2
Dividiere durch .
Schritt 1.5.5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.1.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.3.1.1.2.3
Forme den Ausdruck um.
Schritt 1.5.5.3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.2.2.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.3.1.2.2.3
Forme den Ausdruck um.
Schritt 1.5.5.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.5.5.3.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.4.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.4.2.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.3.1.4.2.3
Forme den Ausdruck um.
Schritt 1.5.5.3.1.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.5.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.1.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.1.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.5.3.1.5.2.2
Forme den Ausdruck um.
Schritt 1.5.5.3.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.5.5.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.5.5.3.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.3.1
Mutltipliziere mit .
Schritt 1.5.5.3.3.2
Stelle die Faktoren von um.
Schritt 1.5.5.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.5.5.3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.5.5.3.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.6.1
Bewege .
Schritt 1.5.5.3.6.2
Mutltipliziere mit .
Schritt 1.5.5.3.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.7.1
Faktorisiere aus heraus.
Schritt 1.5.5.3.7.2
Faktorisiere aus heraus.
Schritt 1.5.5.3.7.3
Faktorisiere aus heraus.
Schritt 1.5.5.3.7.4
Faktorisiere aus heraus.
Schritt 1.5.5.3.7.5
Faktorisiere aus heraus.
Schritt 1.5.5.3.8
Faktorisiere aus heraus.
Schritt 1.5.5.3.9
Schreibe als um.
Schritt 1.5.5.3.10
Faktorisiere aus heraus.
Schritt 1.5.5.3.11
Faktorisiere aus heraus.
Schritt 1.5.5.3.12
Faktorisiere aus heraus.
Schritt 1.5.5.3.13
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.3.13.1
Schreibe als um.
Schritt 1.5.5.3.13.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Ersetze durch .
Schritt 1.7
Berechne bei und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.3.1
Potenziere mit .
Schritt 1.7.3.2
Mutltipliziere mit .
Schritt 1.7.3.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.7.3.4
Mutltipliziere mit .
Schritt 1.7.3.5
Subtrahiere von .
Schritt 1.7.3.6
Addiere und .
Schritt 1.7.4
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.4.1
Mutltipliziere mit .
Schritt 1.7.4.2
Mutltipliziere mit .
Schritt 1.7.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.5.1
Potenziere mit .
Schritt 1.7.5.2
Mutltipliziere mit .
Schritt 1.7.5.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.7.5.4
Mutltipliziere mit .
Schritt 1.7.5.5
Addiere und .
Schritt 1.7.5.6
Addiere und .
Schritt 1.7.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.6.1
Faktorisiere aus heraus.
Schritt 1.7.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.6.2.1
Faktorisiere aus heraus.
Schritt 1.7.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.7.6.2.3
Forme den Ausdruck um.
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 2.3.1.3
Wende das Distributivgesetz an.
Schritt 2.3.1.4
Kombiniere und .
Schritt 2.3.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.5.1
Mutltipliziere mit .
Schritt 2.3.1.5.2
Kombiniere und .
Schritt 2.3.1.5.3
Mutltipliziere mit .
Schritt 2.3.1.6
Bringe auf die linke Seite von .
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.4
Addiere und .
Schritt 2.3.3
Schreibe in -Form.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Stelle die Terme um.
Schritt 2.3.3.2
Entferne die Klammern.
Schritt 3