Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 1.2
Löse nach auf.
Schritt 1.2.1
Teile jeden Term in der Gleichung durch .
Schritt 1.2.2
Wandle von nach um.
Schritt 1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2
Forme den Ausdruck um.
Schritt 1.2.4
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 1.2.5
Vereinfache die rechte Seite.
Schritt 1.2.5.1
Der genau Wert von ist .
Schritt 1.2.6
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 1.2.7
Vereinfache .
Schritt 1.2.7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.7.2
Kombiniere Brüche.
Schritt 1.2.7.2.1
Kombiniere und .
Schritt 1.2.7.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.7.3
Vereinfache den Zähler.
Schritt 1.2.7.3.1
Bringe auf die linke Seite von .
Schritt 1.2.7.3.2
Addiere und .
Schritt 1.2.8
Ermittele die Periode von .
Schritt 1.2.8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.8.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.2.8.4
Dividiere durch .
Schritt 1.2.9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Berechne bei .
Schritt 1.3.1
Ersetze durch .
Schritt 1.3.2
Entferne die Klammern.
Schritt 1.4
Berechne bei .
Schritt 1.4.1
Ersetze durch .
Schritt 1.4.2
Entferne die Klammern.
Schritt 1.5
Liste alle Lösungen auf.
Schritt 2
Die Fläche zwischen den gegebenen Kurven ist unbegrenzt.
Unbegrenzte Fläche
Schritt 3