Analysis Beispiele

Berechne den Grenzwert Grenzwert von (3^x-4^x)/x, wenn x gegen 0 geht
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Bringe den Grenzwert in den Exponenten.
Schritt 1.1.2.3
Bringe den Grenzwert in den Exponenten.
Schritt 1.1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1.1
Alles, was mit potenziert wird, ist .
Schritt 1.1.2.5.1.2
Alles, was mit potenziert wird, ist .
Schritt 1.1.2.5.1.3
Mutltipliziere mit .
Schritt 1.1.2.5.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Dividiere durch .
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.3
Bringe den Grenzwert in den Exponenten.
Schritt 2.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.5
Bringe den Grenzwert in den Exponenten.
Schritt 3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Alles, was mit potenziert wird, ist .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Alles, was mit potenziert wird, ist .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: