Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=(x-2)(x-3)^2
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.3.1.3
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.5
Mutltipliziere mit .
Schritt 1.5.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5.7
Addiere und .
Schritt 1.5.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.5.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.11.1
Addiere und .
Schritt 1.5.11.2
Mutltipliziere mit .
Schritt 1.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Wende das Distributivgesetz an.
Schritt 1.6.2
Wende das Distributivgesetz an.
Schritt 1.6.3
Wende das Distributivgesetz an.
Schritt 1.6.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.4.1
Potenziere mit .
Schritt 1.6.4.2
Potenziere mit .
Schritt 1.6.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.6.4.4
Addiere und .
Schritt 1.6.4.5
Mutltipliziere mit .
Schritt 1.6.4.6
Bringe auf die linke Seite von .
Schritt 1.6.4.7
Mutltipliziere mit .
Schritt 1.6.4.8
Subtrahiere von .
Schritt 1.6.4.9
Addiere und .
Schritt 1.6.4.10
Subtrahiere von .
Schritt 1.6.4.11
Addiere und .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Wende das Distributivgesetz an.
Schritt 4.1.2.2
Wende das Distributivgesetz an.
Schritt 4.1.2.3
Wende das Distributivgesetz an.
Schritt 4.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1.1
Mutltipliziere mit .
Schritt 4.1.3.1.2
Bringe auf die linke Seite von .
Schritt 4.1.3.1.3
Mutltipliziere mit .
Schritt 4.1.3.2
Subtrahiere von .
Schritt 4.1.4
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.1.5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.5.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5.5
Mutltipliziere mit .
Schritt 4.1.5.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5.7
Addiere und .
Schritt 4.1.5.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.5.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.11.1
Addiere und .
Schritt 4.1.5.11.2
Mutltipliziere mit .
Schritt 4.1.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.6.1
Wende das Distributivgesetz an.
Schritt 4.1.6.2
Wende das Distributivgesetz an.
Schritt 4.1.6.3
Wende das Distributivgesetz an.
Schritt 4.1.6.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.6.4.1
Potenziere mit .
Schritt 4.1.6.4.2
Potenziere mit .
Schritt 4.1.6.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.6.4.4
Addiere und .
Schritt 4.1.6.4.5
Mutltipliziere mit .
Schritt 4.1.6.4.6
Bringe auf die linke Seite von .
Schritt 4.1.6.4.7
Mutltipliziere mit .
Schritt 4.1.6.4.8
Subtrahiere von .
Schritt 4.1.6.4.9
Addiere und .
Schritt 4.1.6.4.10
Subtrahiere von .
Schritt 4.1.6.4.11
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.2
Schreibe um als plus
Schritt 5.2.1.3
Wende das Distributivgesetz an.
Schritt 5.2.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 5.2.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 5.2.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Setze gleich .
Schritt 5.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.2.1.2
Dividiere durch .
Schritt 5.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1.1
Faktorisiere aus heraus.
Schritt 9.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 9.1.1.3
Forme den Ausdruck um.
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.2.2
Kombiniere und .
Schritt 11.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.4.1
Mutltipliziere mit .
Schritt 11.2.4.2
Subtrahiere von .
Schritt 11.2.5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 11.2.6
Kombiniere und .
Schritt 11.2.7
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.2.8
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.8.1
Mutltipliziere mit .
Schritt 11.2.8.2
Subtrahiere von .
Schritt 11.2.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.2.10
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.10.1
Wende die Produktregel auf an.
Schritt 11.2.10.2
Wende die Produktregel auf an.
Schritt 11.2.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.11.1
Potenziere mit .
Schritt 11.2.11.2
Mutltipliziere mit .
Schritt 11.2.12
Kombinieren.
Schritt 11.2.13
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.13.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.13.1.1
Potenziere mit .
Schritt 11.2.13.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 11.2.13.2
Addiere und .
Schritt 11.2.14
Mutltipliziere mit .
Schritt 11.2.15
Potenziere mit .
Schritt 11.2.16
Potenziere mit .
Schritt 11.2.17
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Mutltipliziere mit .
Schritt 13.2
Subtrahiere von .
Schritt 14
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 15
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.1
Subtrahiere von .
Schritt 15.2.2
Mutltipliziere mit .
Schritt 15.2.3
Subtrahiere von .
Schritt 15.2.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 15.2.5
Die endgültige Lösung ist .
Schritt 16
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 17