Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=(x-6)(x^2-12x-72)
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.5
Mutltipliziere mit .
Schritt 1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.7
Addiere und .
Schritt 1.2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.11.1
Addiere und .
Schritt 1.2.11.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Wende das Distributivgesetz an.
Schritt 1.3.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Potenziere mit .
Schritt 1.3.4.2
Potenziere mit .
Schritt 1.3.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.4.4
Addiere und .
Schritt 1.3.4.5
Mutltipliziere mit .
Schritt 1.3.4.6
Bringe auf die linke Seite von .
Schritt 1.3.4.7
Mutltipliziere mit .
Schritt 1.3.4.8
Subtrahiere von .
Schritt 1.3.4.9
Addiere und .
Schritt 1.3.4.10
Subtrahiere von .
Schritt 1.3.4.11
Subtrahiere von .
Schritt 1.3.4.12
Addiere und .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.5
Mutltipliziere mit .
Schritt 4.1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.7
Addiere und .
Schritt 4.1.2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.11.1
Addiere und .
Schritt 4.1.2.11.2
Mutltipliziere mit .
Schritt 4.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Wende das Distributivgesetz an.
Schritt 4.1.3.2
Wende das Distributivgesetz an.
Schritt 4.1.3.3
Wende das Distributivgesetz an.
Schritt 4.1.3.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.4.1
Potenziere mit .
Schritt 4.1.3.4.2
Potenziere mit .
Schritt 4.1.3.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3.4.4
Addiere und .
Schritt 4.1.3.4.5
Mutltipliziere mit .
Schritt 4.1.3.4.6
Bringe auf die linke Seite von .
Schritt 4.1.3.4.7
Mutltipliziere mit .
Schritt 4.1.3.4.8
Subtrahiere von .
Schritt 4.1.3.4.9
Addiere und .
Schritt 4.1.3.4.10
Subtrahiere von .
Schritt 4.1.3.4.11
Subtrahiere von .
Schritt 4.1.3.4.12
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Subtrahiere von .
Schritt 11.2.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.2.2
Mutltipliziere mit .
Schritt 11.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.3.1
Addiere und .
Schritt 11.2.3.2
Subtrahiere von .
Schritt 11.2.3.3
Mutltipliziere mit .
Schritt 11.2.4
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Mutltipliziere mit .
Schritt 13.2
Subtrahiere von .
Schritt 14
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 15
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.1
Subtrahiere von .
Schritt 15.2.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.2.1
Potenziere mit .
Schritt 15.2.2.2
Mutltipliziere mit .
Schritt 15.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.3.1
Subtrahiere von .
Schritt 15.2.3.2
Subtrahiere von .
Schritt 15.2.3.3
Mutltipliziere mit .
Schritt 15.2.4
Die endgültige Lösung ist .
Schritt 16
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 17