Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.2
Addiere und .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 5.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.4.2
Addiere und .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2
Vereinfache die linke Seite.
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.2
Dividiere durch .
Schritt 6.3.3
Vereinfache die rechte Seite.
Schritt 6.3.3.1
Dividiere durch .
Schritt 6.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.5
Vereinfache .
Schritt 6.5.1
Schreibe als um.
Schritt 6.5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Mutltipliziere mit .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Vereinfache jeden Term.
Schritt 12.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 12.2.1.1.1
Mutltipliziere mit .
Schritt 12.2.1.1.1.1
Potenziere mit .
Schritt 12.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 12.2.1.1.2
Addiere und .
Schritt 12.2.1.2
Potenziere mit .
Schritt 12.2.1.3
Mutltipliziere mit .
Schritt 12.2.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 12.2.2.1
Subtrahiere von .
Schritt 12.2.2.2
Subtrahiere von .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Mutltipliziere mit .
Schritt 15
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 16
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Schritt 16.2.1
Vereinfache jeden Term.
Schritt 16.2.1.1
Potenziere mit .
Schritt 16.2.1.2
Mutltipliziere mit .
Schritt 16.2.1.3
Mutltipliziere mit .
Schritt 16.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 16.2.2.1
Addiere und .
Schritt 16.2.2.2
Subtrahiere von .
Schritt 16.2.3
Die endgültige Lösung ist .
Schritt 17
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 18