Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Löse nach auf.
Schritt 5.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.5.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.5.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.5.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.5.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache jeden Term.
Schritt 9.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.1.2
Mutltipliziere mit .
Schritt 11.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.1.4
Mutltipliziere mit .
Schritt 11.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 11.2.2.1
Addiere und .
Schritt 11.2.2.2
Addiere und .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Schritt 13.1
Vereinfache jeden Term.
Schritt 13.1.1
Schreibe als um.
Schritt 13.1.1.1
Benutze , um als neu zu schreiben.
Schritt 13.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 13.1.1.3
Kombiniere und .
Schritt 13.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 13.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 13.1.1.4.2
Forme den Ausdruck um.
Schritt 13.1.1.5
Berechne den Exponenten.
Schritt 13.1.2
Mutltipliziere mit .
Schritt 13.2
Subtrahiere von .
Schritt 14
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 15
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Schritt 15.2.1
Vereinfache jeden Term.
Schritt 15.2.1.1
Schreibe als um.
Schritt 15.2.1.1.1
Benutze , um als neu zu schreiben.
Schritt 15.2.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 15.2.1.1.3
Kombiniere und .
Schritt 15.2.1.1.4
Kürze den gemeinsamen Teiler von und .
Schritt 15.2.1.1.4.1
Faktorisiere aus heraus.
Schritt 15.2.1.1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 15.2.1.1.4.2.1
Faktorisiere aus heraus.
Schritt 15.2.1.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 15.2.1.1.4.2.3
Forme den Ausdruck um.
Schritt 15.2.1.1.4.2.4
Dividiere durch .
Schritt 15.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 15.2.1.2.1
Mutltipliziere mit .
Schritt 15.2.1.2.1.1
Potenziere mit .
Schritt 15.2.1.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 15.2.1.2.2
Addiere und .
Schritt 15.2.1.3
Potenziere mit .
Schritt 15.2.1.4
Schreibe als um.
Schritt 15.2.1.4.1
Benutze , um als neu zu schreiben.
Schritt 15.2.1.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 15.2.1.4.3
Kombiniere und .
Schritt 15.2.1.4.4
Kürze den gemeinsamen Faktor von .
Schritt 15.2.1.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 15.2.1.4.4.2
Forme den Ausdruck um.
Schritt 15.2.1.4.5
Berechne den Exponenten.
Schritt 15.2.1.5
Mutltipliziere mit .
Schritt 15.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 15.2.2.1
Subtrahiere von .
Schritt 15.2.2.2
Addiere und .
Schritt 15.2.3
Die endgültige Lösung ist .
Schritt 16
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 17
Schritt 17.1
Vereinfache jeden Term.
Schritt 17.1.1
Wende die Produktregel auf an.
Schritt 17.1.2
Potenziere mit .
Schritt 17.1.3
Mutltipliziere mit .
Schritt 17.1.4
Schreibe als um.
Schritt 17.1.4.1
Benutze , um als neu zu schreiben.
Schritt 17.1.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 17.1.4.3
Kombiniere und .
Schritt 17.1.4.4
Kürze den gemeinsamen Faktor von .
Schritt 17.1.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 17.1.4.4.2
Forme den Ausdruck um.
Schritt 17.1.4.5
Berechne den Exponenten.
Schritt 17.1.5
Mutltipliziere mit .
Schritt 17.2
Subtrahiere von .
Schritt 18
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 19
Schritt 19.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 19.2
Vereinfache das Ergebnis.
Schritt 19.2.1
Vereinfache jeden Term.
Schritt 19.2.1.1
Wende die Produktregel auf an.
Schritt 19.2.1.2
Potenziere mit .
Schritt 19.2.1.3
Mutltipliziere mit .
Schritt 19.2.1.4
Schreibe als um.
Schritt 19.2.1.4.1
Benutze , um als neu zu schreiben.
Schritt 19.2.1.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 19.2.1.4.3
Kombiniere und .
Schritt 19.2.1.4.4
Kürze den gemeinsamen Teiler von und .
Schritt 19.2.1.4.4.1
Faktorisiere aus heraus.
Schritt 19.2.1.4.4.2
Kürze die gemeinsamen Faktoren.
Schritt 19.2.1.4.4.2.1
Faktorisiere aus heraus.
Schritt 19.2.1.4.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 19.2.1.4.4.2.3
Forme den Ausdruck um.
Schritt 19.2.1.4.4.2.4
Dividiere durch .
Schritt 19.2.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 19.2.1.5.1
Mutltipliziere mit .
Schritt 19.2.1.5.1.1
Potenziere mit .
Schritt 19.2.1.5.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 19.2.1.5.2
Addiere und .
Schritt 19.2.1.6
Potenziere mit .
Schritt 19.2.1.7
Wende die Produktregel auf an.
Schritt 19.2.1.8
Potenziere mit .
Schritt 19.2.1.9
Mutltipliziere mit .
Schritt 19.2.1.10
Schreibe als um.
Schritt 19.2.1.10.1
Benutze , um als neu zu schreiben.
Schritt 19.2.1.10.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 19.2.1.10.3
Kombiniere und .
Schritt 19.2.1.10.4
Kürze den gemeinsamen Faktor von .
Schritt 19.2.1.10.4.1
Kürze den gemeinsamen Faktor.
Schritt 19.2.1.10.4.2
Forme den Ausdruck um.
Schritt 19.2.1.10.5
Berechne den Exponenten.
Schritt 19.2.1.11
Mutltipliziere mit .
Schritt 19.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 19.2.2.1
Subtrahiere von .
Schritt 19.2.2.2
Addiere und .
Schritt 19.2.3
Die endgültige Lösung ist .
Schritt 20
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 21