Analysis Beispiele

Berechne das Integral Integral über x^7e^(x^8) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Benutze , um als neu zu schreiben.
Schritt 2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.3
Kombiniere und .
Schritt 2.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Faktorisiere aus heraus.
Schritt 2.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.2.1
Faktorisiere aus heraus.
Schritt 2.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2.3
Forme den Ausdruck um.
Schritt 2.1.4.2.4
Dividiere durch .
Schritt 2.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Benutze , um als neu zu schreiben.
Schritt 2.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Faktorisiere aus heraus.
Schritt 2.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.2.1
Faktorisiere aus heraus.
Schritt 2.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2.3
Forme den Ausdruck um.
Schritt 2.2.4.2.4
Dividiere durch .
Schritt 2.3
Kombiniere und .
Schritt 2.4
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Benutze , um als neu zu schreiben.
Schritt 5.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.1.3
Kombiniere und .
Schritt 5.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.4.1
Faktorisiere aus heraus.
Schritt 5.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.4.2.1
Faktorisiere aus heraus.
Schritt 5.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.4.2.3
Forme den Ausdruck um.
Schritt 5.1.4.2.4
Dividiere durch .
Schritt 5.2
Kombiniere und .
Schritt 5.3
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Mutltipliziere mit .
Schritt 8
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Mutltipliziere mit .
Schritt 11.2
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Vereinfache.
Schritt 14
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Ersetze alle durch .
Schritt 14.2
Ersetze alle durch .
Schritt 14.3
Ersetze alle durch .