Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 2
Schritt 2.1
Vereinfache .
Schritt 2.1.1
Wende den trigonometrischen Pythagoras an.
Schritt 2.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3
Forme den Ausdruck um.
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Schreibe als um.
Schritt 2.2.2.2
Schreibe als um.
Schritt 2.2.2.3
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 2.2.2.4
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 2.2.2.5
Mutltipliziere mit .
Schritt 3
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Kombiniere und .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Das Integral von nach ist .
Schritt 11
Vereinfache.
Schritt 12
Schritt 12.1
Ersetze alle durch .
Schritt 12.2
Ersetze alle durch .
Schritt 12.3
Ersetze alle durch .
Schritt 13
Schritt 13.1
Kombiniere und .
Schritt 13.2
Wende das Distributivgesetz an.
Schritt 13.3
Kombiniere und .
Schritt 13.4
Multipliziere .
Schritt 13.4.1
Mutltipliziere mit .
Schritt 13.4.2
Mutltipliziere mit .
Schritt 14
Stelle die Terme um.