Analysis Beispiele

Berechne das Integral Integral über 3cos(5x)^2 nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Mutltipliziere mit .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Kombiniere und .
Schritt 6
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Mutltipliziere mit .
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 10
Wende die Konstantenregel an.
Schritt 11
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Kombiniere und .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Das Integral von nach ist .
Schritt 15
Vereinfache.
Schritt 16
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .
Schritt 16.3
Ersetze alle durch .
Schritt 17
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 17.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 17.1.1
Mutltipliziere mit .
Schritt 17.1.2
Kombiniere und .
Schritt 17.2
Wende das Distributivgesetz an.
Schritt 17.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 17.3.1
Faktorisiere aus heraus.
Schritt 17.3.2
Faktorisiere aus heraus.
Schritt 17.3.3
Kürze den gemeinsamen Faktor.
Schritt 17.3.4
Forme den Ausdruck um.
Schritt 17.4
Kombiniere und .
Schritt 17.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 17.5.1
Mutltipliziere mit .
Schritt 17.5.2
Mutltipliziere mit .
Schritt 18
Stelle die Terme um.