Analysis Beispiele

Berechne das Integral Integral von 0 bis pi über sin(x)^2 nach x
Schritt 1
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Wende die Konstantenregel an.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Setze die untere Grenze für in ein.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Setze die obere Grenze für in ein.
Schritt 6.5
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 6.6
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Berechne bei und .
Schritt 10.2
Berechne bei und .
Schritt 10.3
Addiere und .
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Der genau Wert von ist .
Schritt 11.2
Mutltipliziere mit .
Schritt 11.3
Addiere und .
Schritt 11.4
Kombiniere und .
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 12.1.2
Der genau Wert von ist .
Schritt 12.2
Dividiere durch .
Schritt 12.3
Mutltipliziere mit .
Schritt 12.4
Addiere und .
Schritt 12.5
Kombiniere und .
Schritt 13
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: