Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die zweite Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Benutze , um als neu zu schreiben.
Schritt 1.1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Ersetze alle durch .
Schritt 1.1.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.4
Kombiniere und .
Schritt 1.1.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.6
Vereinfache den Zähler.
Schritt 1.1.1.6.1
Mutltipliziere mit .
Schritt 1.1.1.6.2
Subtrahiere von .
Schritt 1.1.1.7
Kombiniere Brüche.
Schritt 1.1.1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.7.2
Kombiniere und .
Schritt 1.1.1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.10
Addiere und .
Schritt 1.1.1.11
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.13
Kombiniere Brüche.
Schritt 1.1.1.13.1
Mutltipliziere mit .
Schritt 1.1.1.13.2
Kombiniere und .
Schritt 1.1.1.13.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2
Bestimme die zweite Ableitung.
Schritt 1.1.2.1
Differenziere unter Anwendung der Faktorregel.
Schritt 1.1.2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 1.1.2.1.2.1
Schreibe als um.
Schritt 1.1.2.1.2.2
Multipliziere die Exponenten in .
Schritt 1.1.2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.2.1.2.2.2
Kombiniere und .
Schritt 1.1.2.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2.3
Ersetze alle durch .
Schritt 1.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.2.4
Kombiniere und .
Schritt 1.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.2.6
Vereinfache den Zähler.
Schritt 1.1.2.6.1
Mutltipliziere mit .
Schritt 1.1.2.6.2
Subtrahiere von .
Schritt 1.1.2.7
Kombiniere Brüche.
Schritt 1.1.2.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2.7.2
Kombiniere und .
Schritt 1.1.2.7.3
Vereinfache den Ausdruck.
Schritt 1.1.2.7.3.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.2.7.3.2
Mutltipliziere mit .
Schritt 1.1.2.7.3.3
Mutltipliziere mit .
Schritt 1.1.2.7.4
Mutltipliziere mit .
Schritt 1.1.2.7.5
Mutltipliziere mit .
Schritt 1.1.2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.10
Addiere und .
Schritt 1.1.2.11
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.13
Kombiniere Brüche.
Schritt 1.1.2.13.1
Mutltipliziere mit .
Schritt 1.1.2.13.2
Kombiniere und .
Schritt 1.1.2.13.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 2
Schritt 2.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2.2
Löse nach auf.
Schritt 2.2.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 2.2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.2.2.2
Dividiere durch .
Schritt 2.2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.2.3.1
Dividiere durch .
Schritt 2.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache den Nenner.
Schritt 4.2.1.1
Subtrahiere von .
Schritt 4.2.1.2
Schreibe als um.
Schritt 4.2.1.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.4.2
Forme den Ausdruck um.
Schritt 4.2.1.5
Potenziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konkav, weil negativ ist.
Konkav im Intervall , da negativ ist
Konkav im Intervall , da negativ ist
Schritt 5