Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Ersetze alle durch .
Schritt 1.1.4
Differenziere.
Schritt 1.1.4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.4
Vereinfache den Ausdruck.
Schritt 1.1.4.4.1
Addiere und .
Schritt 1.1.4.4.2
Mutltipliziere mit .
Schritt 1.1.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.6
Mutltipliziere mit .
Schritt 1.1.5
Vereinfache.
Schritt 1.1.5.1
Wende das Distributivgesetz an.
Schritt 1.1.5.2
Mutltipliziere mit .
Schritt 1.1.5.3
Faktorisiere aus heraus.
Schritt 1.1.5.3.1
Faktorisiere aus heraus.
Schritt 1.1.5.3.2
Faktorisiere aus heraus.
Schritt 1.1.5.3.3
Faktorisiere aus heraus.
Schritt 1.1.5.4
Addiere und .
Schritt 1.1.5.5
Schreibe als um.
Schritt 1.1.5.6
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.1.5.6.1
Wende das Distributivgesetz an.
Schritt 1.1.5.6.2
Wende das Distributivgesetz an.
Schritt 1.1.5.6.3
Wende das Distributivgesetz an.
Schritt 1.1.5.7
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.1.5.7.1
Vereinfache jeden Term.
Schritt 1.1.5.7.1.1
Mutltipliziere mit .
Schritt 1.1.5.7.1.2
Bringe auf die linke Seite von .
Schritt 1.1.5.7.1.3
Mutltipliziere mit .
Schritt 1.1.5.7.2
Subtrahiere von .
Schritt 1.1.5.8
Wende das Distributivgesetz an.
Schritt 1.1.5.9
Vereinfache.
Schritt 1.1.5.9.1
Mutltipliziere mit .
Schritt 1.1.5.9.2
Mutltipliziere mit .
Schritt 1.1.5.10
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 1.1.5.11
Vereinfache jeden Term.
Schritt 1.1.5.11.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.5.11.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.5.11.2.1
Bewege .
Schritt 1.1.5.11.2.2
Mutltipliziere mit .
Schritt 1.1.5.11.2.2.1
Potenziere mit .
Schritt 1.1.5.11.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.5.11.2.3
Addiere und .
Schritt 1.1.5.11.3
Mutltipliziere mit .
Schritt 1.1.5.11.4
Mutltipliziere mit .
Schritt 1.1.5.11.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.5.11.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.1.5.11.6.1
Bewege .
Schritt 1.1.5.11.6.2
Mutltipliziere mit .
Schritt 1.1.5.11.7
Mutltipliziere mit .
Schritt 1.1.5.11.8
Mutltipliziere mit .
Schritt 1.1.5.11.9
Mutltipliziere mit .
Schritt 1.1.5.11.10
Mutltipliziere mit .
Schritt 1.1.5.12
Subtrahiere von .
Schritt 1.1.5.13
Addiere und .
Schritt 1.2
Bestimme die zweite Ableitung.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.2.4
Berechne .
Schritt 1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4.3
Mutltipliziere mit .
Schritt 1.2.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.2.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.5.2
Addiere und .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Schritt 2.2.2.1
Faktorisiere durch Gruppieren.
Schritt 2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1.2
Schreibe um als plus
Schritt 2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Multipliziere .
Schritt 3.1.2.1.1
Kombiniere und .
Schritt 3.1.2.1.2
Mutltipliziere mit .
Schritt 3.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.1.2.3
Kombiniere und .
Schritt 3.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.5
Vereinfache den Zähler.
Schritt 3.1.2.5.1
Mutltipliziere mit .
Schritt 3.1.2.5.2
Subtrahiere von .
Schritt 3.1.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.7
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 3.1.2.7.1
Wende die Produktregel auf an.
Schritt 3.1.2.7.2
Wende die Produktregel auf an.
Schritt 3.1.2.8
Potenziere mit .
Schritt 3.1.2.9
Potenziere mit .
Schritt 3.1.2.10
Potenziere mit .
Schritt 3.1.2.11
Multipliziere .
Schritt 3.1.2.11.1
Mutltipliziere mit .
Schritt 3.1.2.11.2
Mutltipliziere mit .
Schritt 3.1.2.11.3
Mutltipliziere mit .
Schritt 3.1.2.12
Die endgültige Lösung ist .
Schritt 3.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.3
Ersetze in , um den Wert von zu ermitteln.
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Schritt 3.3.2.1
Mutltipliziere mit .
Schritt 3.3.2.2
Subtrahiere von .
Schritt 3.3.2.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.3.2.4
Mutltipliziere mit .
Schritt 3.3.2.5
Die endgültige Lösung ist .
Schritt 3.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 4
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Schritt 9