Analysis Beispiele

Ermittle die Wendepunkte f(x)=3x(x-3)^3
Schritt 1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Ersetze alle durch .
Schritt 1.1.4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.4.1
Addiere und .
Schritt 1.1.4.4.2
Mutltipliziere mit .
Schritt 1.1.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.6
Mutltipliziere mit .
Schritt 1.1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.1
Wende das Distributivgesetz an.
Schritt 1.1.5.2
Mutltipliziere mit .
Schritt 1.1.5.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.3.1
Faktorisiere aus heraus.
Schritt 1.1.5.3.2
Faktorisiere aus heraus.
Schritt 1.1.5.3.3
Faktorisiere aus heraus.
Schritt 1.1.5.4
Addiere und .
Schritt 1.1.5.5
Schreibe als um.
Schritt 1.1.5.6
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.6.1
Wende das Distributivgesetz an.
Schritt 1.1.5.6.2
Wende das Distributivgesetz an.
Schritt 1.1.5.6.3
Wende das Distributivgesetz an.
Schritt 1.1.5.7
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.7.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.7.1.1
Mutltipliziere mit .
Schritt 1.1.5.7.1.2
Bringe auf die linke Seite von .
Schritt 1.1.5.7.1.3
Mutltipliziere mit .
Schritt 1.1.5.7.2
Subtrahiere von .
Schritt 1.1.5.8
Wende das Distributivgesetz an.
Schritt 1.1.5.9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.9.1
Mutltipliziere mit .
Schritt 1.1.5.9.2
Mutltipliziere mit .
Schritt 1.1.5.10
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 1.1.5.11
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.11.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.5.11.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.11.2.1
Bewege .
Schritt 1.1.5.11.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.11.2.2.1
Potenziere mit .
Schritt 1.1.5.11.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.5.11.2.3
Addiere und .
Schritt 1.1.5.11.3
Mutltipliziere mit .
Schritt 1.1.5.11.4
Mutltipliziere mit .
Schritt 1.1.5.11.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.1.5.11.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.11.6.1
Bewege .
Schritt 1.1.5.11.6.2
Mutltipliziere mit .
Schritt 1.1.5.11.7
Mutltipliziere mit .
Schritt 1.1.5.11.8
Mutltipliziere mit .
Schritt 1.1.5.11.9
Mutltipliziere mit .
Schritt 1.1.5.11.10
Mutltipliziere mit .
Schritt 1.1.5.12
Subtrahiere von .
Schritt 1.1.5.13
Addiere und .
Schritt 1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4.3
Mutltipliziere mit .
Schritt 1.2.5
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.5.2
Addiere und .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1.2
Schreibe um als plus
Schritt 2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Kombiniere und .
Schritt 3.1.2.1.2
Mutltipliziere mit .
Schritt 3.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.1.2.3
Kombiniere und .
Schritt 3.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1
Mutltipliziere mit .
Schritt 3.1.2.5.2
Subtrahiere von .
Schritt 3.1.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.7
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.7.1
Wende die Produktregel auf an.
Schritt 3.1.2.7.2
Wende die Produktregel auf an.
Schritt 3.1.2.8
Potenziere mit .
Schritt 3.1.2.9
Potenziere mit .
Schritt 3.1.2.10
Potenziere mit .
Schritt 3.1.2.11
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.11.1
Mutltipliziere mit .
Schritt 3.1.2.11.2
Mutltipliziere mit .
Schritt 3.1.2.11.3
Mutltipliziere mit .
Schritt 3.1.2.12
Die endgültige Lösung ist .
Schritt 3.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.3
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Mutltipliziere mit .
Schritt 3.3.2.2
Subtrahiere von .
Schritt 3.3.2.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.3.2.4
Mutltipliziere mit .
Schritt 3.3.2.5
Die endgültige Lösung ist .
Schritt 3.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 3.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 4
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 5
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Schritt 9