Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.2
Die Ableitung von nach ist .
Schritt 1.1.1.3
Ersetze alle durch .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Vereinfache den Ausdruck.
Schritt 1.1.2.3.1
Mutltipliziere mit .
Schritt 1.1.2.3.2
Bringe auf die linke Seite von .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
Dividiere durch .
Schritt 2.3
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.4
Vereinfache die rechte Seite.
Schritt 2.4.1
Der genau Wert von ist .
Schritt 2.5
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.5.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2
Vereinfache die linke Seite.
Schritt 2.5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.1.2
Dividiere durch .
Schritt 2.5.3
Vereinfache die rechte Seite.
Schritt 2.5.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5.3.2
Multipliziere .
Schritt 2.5.3.2.1
Mutltipliziere mit .
Schritt 2.5.3.2.2
Mutltipliziere mit .
Schritt 2.6
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 2.7
Löse nach auf.
Schritt 2.7.1
Vereinfache.
Schritt 2.7.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7.1.2
Kombiniere und .
Schritt 2.7.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.7.1.4
Mutltipliziere mit .
Schritt 2.7.1.5
Subtrahiere von .
Schritt 2.7.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.7.2.1
Teile jeden Ausdruck in durch .
Schritt 2.7.2.2
Vereinfache die linke Seite.
Schritt 2.7.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.2.2.1.2
Dividiere durch .
Schritt 2.7.2.3
Vereinfache die rechte Seite.
Schritt 2.7.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.7.2.3.2
Multipliziere .
Schritt 2.7.2.3.2.1
Mutltipliziere mit .
Schritt 2.7.2.3.2.2
Mutltipliziere mit .
Schritt 2.8
Ermittele die Periode von .
Schritt 2.8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.8.2
Ersetze durch in der Formel für die Periode.
Schritt 2.8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.8.4
Kürze den gemeinsamen Faktor von .
Schritt 2.8.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.8.4.2
Dividiere durch .
Schritt 2.9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 2.10
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.1.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.3
Forme den Ausdruck um.
Schritt 4.1.2.2
Der genau Wert von ist .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.3
Forme den Ausdruck um.
Schritt 4.2.2.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 4.2.2.3
Der genau Wert von ist .
Schritt 4.2.2.4
Mutltipliziere mit .
Schritt 4.3
Liste all Punkte auf.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 5