Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Dividiere durch .
Schritt 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5
Vereinfache .
Schritt 2.5.1
Schreibe als um.
Schritt 2.5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 7.2.1.1.1
Mutltipliziere mit .
Schritt 7.2.1.1.1.1
Potenziere mit .
Schritt 7.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.2.1.1.2
Addiere und .
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9