Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen f(x)=1/(x^2)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Schreibe als um.
Schritt 1.1.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.1.2.2
Mutltipliziere mit .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.3.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.2.1
Kombiniere und .
Schritt 1.1.3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden
Schritt 4
Ermittele, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Schreibe als um.
Schritt 4.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Potenziere mit .
Schritt 6.2.2
Dividiere durch .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.2
Dividiere durch .
Schritt 7.2.3
Mutltipliziere mit .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9