Analysis Beispiele

Finde die horizontale Tangente y=x+sin(x)
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 3
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Der genau Wert von ist .
Schritt 3.4
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 3.5
Subtrahiere von .
Schritt 3.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.6.2
Ersetze durch in der Formel für die Periode.
Schritt 3.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.6.4
Dividiere durch .
Schritt 3.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 4.2.1.2
Der genau Wert von ist .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 5
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Addiere und .
Schritt 5.2.1.2
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 5.2.1.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 5.2.1.4
Der genau Wert von ist .
Schritt 5.2.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Addiere und .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 6
Die horizontale Tangentenlinie der Funktion ist .
Schritt 7