Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Der genau Wert von ist .
Schritt 3.4
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 3.5
Subtrahiere von .
Schritt 3.6
Ermittele die Periode von .
Schritt 3.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.6.2
Ersetze durch in der Formel für die Periode.
Schritt 3.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.6.4
Dividiere durch .
Schritt 3.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 4.2.1.2
Der genau Wert von ist .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Addiere und .
Schritt 5.2.1.2
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 5.2.1.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 5.2.1.4
Der genau Wert von ist .
Schritt 5.2.2
Vereinfache durch Addieren von Termen.
Schritt 5.2.2.1
Addiere und .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 6
Die horizontale Tangentenlinie der Funktion ist .
Schritt 7