Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.1.3
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende die Produktregel auf an.
Schritt 4.2.1.2
Potenziere mit .
Schritt 4.2.1.3
Potenziere mit .
Schritt 4.2.1.4
Wende die Produktregel auf an.
Schritt 4.2.1.5
Potenziere mit .
Schritt 4.2.1.6
Potenziere mit .
Schritt 4.2.1.7
Multipliziere .
Schritt 4.2.1.7.1
Kombiniere und .
Schritt 4.2.1.7.2
Mutltipliziere mit .
Schritt 4.2.1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 4.2.3.1
Mutltipliziere mit .
Schritt 4.2.3.2
Mutltipliziere mit .
Schritt 4.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.5
Vereinfache den Zähler.
Schritt 4.2.5.1
Mutltipliziere mit .
Schritt 4.2.5.2
Subtrahiere von .
Schritt 4.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.7
Die endgültige Lösung ist .
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6