Analysis Beispiele

Ermittle die kritischen Punkte f(x)=3x^5-10x^3+15x
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 2.3
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.3
Faktorisiere aus heraus.
Schritt 2.3.1.4
Faktorisiere aus heraus.
Schritt 2.3.1.5
Faktorisiere aus heraus.
Schritt 2.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Schreibe als um.
Schritt 2.3.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.3.2.3
Schreibe das Polynom neu.
Schritt 2.3.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.2
Dividiere durch .
Schritt 2.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Dividiere durch .
Schritt 2.5
Setze gleich .
Schritt 2.6
Addiere zu beiden Seiten der Gleichung.
Schritt 2.7
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 2.8
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.8.2
Jede Wurzel von ist .
Schritt 2.8.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.8.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.8.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Subtrahiere von .
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Potenziere mit .
Schritt 4.2.2.1.2
Mutltipliziere mit .
Schritt 4.2.2.1.3
Potenziere mit .
Schritt 4.2.2.1.4
Mutltipliziere mit .
Schritt 4.2.2.1.5
Mutltipliziere mit .
Schritt 4.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.2.1
Addiere und .
Schritt 4.2.2.2.2
Subtrahiere von .
Schritt 4.3
Liste all Punkte auf.
Schritt 5