Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Der genau Wert von ist .
Schritt 1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Die Ableitung von nach ist .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4
Schritt 4.1
Dividiere durch .
Schritt 4.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Der genau Wert von ist .