Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Subtrahiere von .
Schritt 1.4.2
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere.
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Vereinfache.
Schritt 4.1.4.1
Subtrahiere von .
Schritt 4.1.4.2
Stelle die Terme um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 10
Schritt 10.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2
Vereinfache das Ergebnis.
Schritt 10.2.1
Vereinfache jeden Term.
Schritt 10.2.1.1
Multipliziere .
Schritt 10.2.1.1.1
Mutltipliziere mit .
Schritt 10.2.1.1.2
Mutltipliziere mit .
Schritt 10.2.1.2
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 10.2.1.2.1
Wende die Produktregel auf an.
Schritt 10.2.1.2.2
Wende die Produktregel auf an.
Schritt 10.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 10.2.1.3.1
Bewege .
Schritt 10.2.1.3.2
Mutltipliziere mit .
Schritt 10.2.1.3.2.1
Potenziere mit .
Schritt 10.2.1.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10.2.1.3.3
Addiere und .
Schritt 10.2.1.4
Potenziere mit .
Schritt 10.2.1.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.2.1.6
Potenziere mit .
Schritt 10.2.2
Ermittle den gemeinsamen Nenner.
Schritt 10.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 10.2.2.2
Mutltipliziere mit .
Schritt 10.2.2.3
Mutltipliziere mit .
Schritt 10.2.2.4
Mutltipliziere mit .
Schritt 10.2.2.5
Mutltipliziere mit .
Schritt 10.2.2.6
Mutltipliziere mit .
Schritt 10.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.2.4
Vereinfache den Ausdruck.
Schritt 10.2.4.1
Mutltipliziere mit .
Schritt 10.2.4.2
Addiere und .
Schritt 10.2.4.3
Subtrahiere von .
Schritt 10.2.5
Die endgültige Lösung ist .
Schritt 11
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
Schritt 12