Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Kombiniere und .
Schritt 3.6
Kürze den gemeinsamen Teiler von und .
Schritt 3.6.1
Faktorisiere aus heraus.
Schritt 3.6.2
Kürze die gemeinsamen Faktoren.
Schritt 3.6.2.1
Faktorisiere aus heraus.
Schritt 3.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.3
Forme den Ausdruck um.
Schritt 3.7
Kombiniere und .
Schritt 3.8
Mutltipliziere mit .
Schritt 4
Stelle die Terme um.