Analysis Beispiele

Berechne den Grenzwert Grenzwert von (cos(x)tan(x))/x, wenn x gegen 0 geht
Schritt 1
Wende trigonometrische Formeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 2
Der Grenzwert von für gegen ist .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Der genau Wert von ist .
Schritt 2.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Dividiere durch .
Schritt 2.4.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.6
Der genau Wert von ist .