Analysis Beispiele

(2π,0)에서의 접선 구하기 y=sin(sin(x)) , (2pi,0)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Stelle die Faktoren von um.
Schritt 1.4
Bestimme die Ableitung bei .
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 1.5.2
Der genau Wert von ist .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.5.4
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 1.5.5
Der genau Wert von ist .
Schritt 1.5.6
Der genau Wert von ist .
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Addiere und .
Schritt 2.3.2
Mutltipliziere mit .
Schritt 3