Analysis Beispiele

dy/dx 구하기 e^(2x)=sin(x+3y)
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Mutltipliziere mit .
Schritt 2.2.3.2
Bringe auf die linke Seite von .
Schritt 3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Die Ableitung von nach ist .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Schreibe als um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Dividiere durch .
Schritt 5.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.4.3.1.2
Kombinieren.
Schritt 5.4.3.1.3
Mutltipliziere mit .
Schritt 5.4.3.1.4
Bringe auf die linke Seite von .
Schritt 5.4.3.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .