Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Die Ableitung von nach ist .
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Differenziere unter Anwendung der Faktorregel.
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Vereinfache Terme.
Schritt 2.2.2.1
Kombiniere und .
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.2
Forme den Ausdruck um.
Schritt 2.3
Schreibe als um.
Schritt 2.4
Kombiniere und .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Vereinfache den Ausdruck.
Schritt 3.3.3.1
Mutltipliziere mit .
Schritt 3.3.3.2
Bringe auf die linke Seite von .
Schritt 3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.4.3
Ersetze alle durch .
Schritt 3.5
Schreibe als um.
Schritt 3.6
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Multipliziere beide Seiten mit .
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Vereinfache .
Schritt 5.2.2.1.1
Wende das Distributivgesetz an.
Schritt 5.2.2.1.2
Vereinfache den Ausdruck.
Schritt 5.2.2.1.2.1
Stelle die Faktoren in um.
Schritt 5.2.2.1.2.2
Stelle und um.
Schritt 5.3
Löse nach auf.
Schritt 5.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3.2
Faktorisiere aus heraus.
Schritt 5.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.2.2
Faktorisiere aus heraus.
Schritt 5.3.2.3
Faktorisiere aus heraus.
Schritt 5.3.3
Schreibe als um.
Schritt 5.3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.4.1
Teile jeden Ausdruck in durch .
Schritt 5.3.4.2
Vereinfache die linke Seite.
Schritt 5.3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2.1.2
Dividiere durch .
Schritt 6
Ersetze durch .