Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Schreibe als um.
Schritt 1.5.1
Benutze , um als neu zu schreiben.
Schritt 1.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.5.3
Kombiniere und .
Schritt 1.5.4
Kürze den gemeinsamen Faktor von .
Schritt 1.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.4.2
Forme den Ausdruck um.
Schritt 1.5.5
Vereinfache.
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Das Integral von nach ist .
Schritt 5
Berechne bei und .
Schritt 6
Der genau Wert von ist .
Schritt 7
Schritt 7.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 7.2
Der genau Wert von ist .
Schritt 7.3
Mutltipliziere mit .
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Addiere und .
Schritt 7.6
Kürze den gemeinsamen Faktor von .
Schritt 7.6.1
Kürze den gemeinsamen Faktor.
Schritt 7.6.2
Forme den Ausdruck um.