Analysis Beispiele

dy/dx 구하기 Quadratwurzel von x+y=1+x^2y^2
Schritt 1
Benutze , um als neu zu schreiben.
Schritt 2
Differenziere beide Seiten der Gleichung.
Schritt 3
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3
Kombiniere und .
Schritt 3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Mutltipliziere mit .
Schritt 3.5.2
Subtrahiere von .
Schritt 3.6
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.6.2
Kombiniere und .
Schritt 3.6.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9
Schreibe als um.
Schritt 3.10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.1
Stelle die Faktoren von um.
Schritt 3.10.2
Mutltipliziere mit .
Schritt 4
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.2.3
Ersetze alle durch .
Schritt 4.2.3
Schreibe als um.
Schritt 4.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.5
Bringe auf die linke Seite von .
Schritt 4.2.6
Bringe auf die linke Seite von .
Schritt 4.3
Addiere und .
Schritt 5
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Multipliziere beide Seiten mit .
Schritt 6.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.2.2
Forme den Ausdruck um.
Schritt 6.2.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.3.2
Forme den Ausdruck um.
Schritt 6.2.1.1.4
Stelle und um.
Schritt 6.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Wende das Distributivgesetz an.
Schritt 6.2.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.2.1
Mutltipliziere mit .
Schritt 6.2.2.1.2.2
Mutltipliziere mit .
Schritt 6.2.2.1.2.3
Bewege .
Schritt 6.2.2.1.2.4
Bewege .
Schritt 6.2.2.1.2.5
Bewege .
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Faktorisiere aus heraus.
Schritt 6.3.3.2
Faktorisiere aus heraus.
Schritt 6.3.3.3
Faktorisiere aus heraus.
Schritt 6.3.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.4.1
Teile jeden Ausdruck in durch .
Schritt 6.3.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.4.2.2
Dividiere durch .
Schritt 6.3.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7
Ersetze durch .