Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Vereine die Terme
Schritt 1.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 1.1.3.1
Mutltipliziere mit .
Schritt 1.1.3.2
Mutltipliziere mit .
Schritt 1.1.3.3
Stelle die Faktoren von um.
Schritt 1.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.5
Subtrahiere von .
Schritt 1.1.6
Addiere und .
Schritt 1.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Schritt 2.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.3.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.3.3
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 2.1.3.3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.4
Vereinfache die Lösung.
Schritt 2.1.3.4.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.3.4.2
Addiere und .
Schritt 2.1.3.4.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.3.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Schritt 5.1
Vereinfache den Nenner.
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
Addiere und .
Schritt 5.2
Dividiere durch .