Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.4
Kombiniere Brüche.
Schritt 1.2.4.1
Addiere und .
Schritt 1.2.4.2
Kombiniere und .
Schritt 1.2.4.3
Kombiniere und .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere.
Schritt 2.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2
Bringe auf die linke Seite von .
Schritt 2.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.6
Vereinfache den Ausdruck.
Schritt 2.3.6.1
Addiere und .
Schritt 2.3.6.2
Mutltipliziere mit .
Schritt 2.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.4.1
Bewege .
Schritt 2.4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.3
Addiere und .
Schritt 2.5
Kombiniere und .
Schritt 2.6
Vereinfache.
Schritt 2.6.1
Wende das Distributivgesetz an.
Schritt 2.6.2
Wende das Distributivgesetz an.
Schritt 2.6.3
Wende das Distributivgesetz an.
Schritt 2.6.4
Vereinfache den Zähler.
Schritt 2.6.4.1
Vereinfache jeden Term.
Schritt 2.6.4.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.6.4.1.1.1
Bewege .
Schritt 2.6.4.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.6.4.1.1.3
Addiere und .
Schritt 2.6.4.1.2
Mutltipliziere mit .
Schritt 2.6.4.1.3
Mutltipliziere mit .
Schritt 2.6.4.1.4
Mutltipliziere mit .
Schritt 2.6.4.1.5
Mutltipliziere mit .
Schritt 2.6.4.2
Subtrahiere von .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.1.2
Die Ableitung von nach ist .
Schritt 4.1.1.3
Ersetze alle durch .
Schritt 4.1.2
Differenziere.
Schritt 4.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.4
Kombiniere Brüche.
Schritt 4.1.2.4.1
Addiere und .
Schritt 4.1.2.4.2
Kombiniere und .
Schritt 4.1.2.4.3
Kombiniere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Setze den Zähler gleich Null.
Schritt 5.3
Löse die Gleichung nach auf.
Schritt 5.3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.1.1
Teile jeden Ausdruck in durch .
Schritt 5.3.1.2
Vereinfache die linke Seite.
Schritt 5.3.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.2.1.2
Dividiere durch .
Schritt 5.3.1.3
Vereinfache die rechte Seite.
Schritt 5.3.1.3.1
Dividiere durch .
Schritt 5.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.3.3
Vereinfache .
Schritt 5.3.3.1
Schreibe als um.
Schritt 5.3.3.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Zähler.
Schritt 9.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.1.4
Mutltipliziere mit .
Schritt 9.1.5
Addiere und .
Schritt 9.2
Vereinfache den Nenner.
Schritt 9.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.2.2
Addiere und .
Schritt 9.2.3
Potenziere mit .
Schritt 9.3
Dividiere durch .
Schritt 10
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Vereinfache das Ergebnis.
Schritt 10.2.2.1
Potenziere mit .
Schritt 10.2.2.2
Vereinfache den Nenner.
Schritt 10.2.2.2.1
Potenziere mit .
Schritt 10.2.2.2.2
Addiere und .
Schritt 10.2.2.3
Vereinfache den Ausdruck.
Schritt 10.2.2.3.1
Mutltipliziere mit .
Schritt 10.2.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 10.2.2.4
Die endgültige Lösung ist .
Schritt 10.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.3.2
Vereinfache das Ergebnis.
Schritt 10.3.2.1
Vereinfache den Zähler.
Schritt 10.3.2.1.1
Schreibe als um.
Schritt 10.3.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10.3.2.1.3
Addiere und .
Schritt 10.3.2.2
Vereinfache den Nenner.
Schritt 10.3.2.2.1
Potenziere mit .
Schritt 10.3.2.2.2
Addiere und .
Schritt 10.3.2.3
Potenziere mit .
Schritt 10.3.2.4
Die endgültige Lösung ist .
Schritt 10.4
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 11