Analysis Beispiele

Berechne das Integral Integral über ( natürlicher Logarithmus von x)/(x^5) nach x
Schritt 1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kombiniere und .
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Potenziere mit .
Schritt 3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.5
Addiere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 7.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.2
Mutltipliziere mit .
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Schreibe als um.
Schritt 9.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Mutltipliziere mit .
Schritt 9.2.2
Bringe auf die linke Seite von .
Schritt 9.2.3
Mutltipliziere mit .
Schritt 9.2.4
Mutltipliziere mit .