Analysis Beispiele

Berechne das Integral Integral von e bis e^2 über 1/(x natürlicher Logarithmus von x) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Der natürliche Logarithmus von ist .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 1.5.2
Der natürliche Logarithmus von ist .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Das Integral von nach ist .
Schritt 3
Berechne bei und .
Schritt 4
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.3
Dividiere durch .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: