Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Mutltipliziere mit .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Setze die obere Grenze für in ein.
Schritt 2.4
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.5
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Kombiniere und .
Schritt 6
Das Integral von nach ist .
Schritt 7
Berechne bei und .