Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Es sei . Ermittle .
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Subtrahiere von .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache jeden Term.
Schritt 1.3.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache jeden Term.
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Schritt 2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Schritt 7.1
Berechne bei und .
Schritt 7.2
Vereinfache.
Schritt 7.2.1
Schreibe als um.
Schritt 7.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.3
Kürze den gemeinsamen Faktor von .
Schritt 7.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.3.2
Forme den Ausdruck um.
Schritt 7.2.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.5
Mutltipliziere mit .
Schritt 7.2.6
Schreibe als um.
Schritt 7.2.7
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.8
Kürze den gemeinsamen Faktor von .
Schritt 7.2.8.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.8.2
Forme den Ausdruck um.
Schritt 7.2.9
Potenziere mit .
Schritt 7.2.10
Mutltipliziere mit .
Schritt 7.2.11
Kombiniere und .
Schritt 7.2.12
Mutltipliziere mit .
Schritt 7.2.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.14
Subtrahiere von .
Schritt 7.2.15
Mutltipliziere mit .
Schritt 7.2.16
Mutltipliziere mit .
Schritt 7.2.17
Mutltipliziere mit .
Schritt 7.2.18
Mutltipliziere mit .
Schritt 7.2.19
Kürze den gemeinsamen Teiler von und .
Schritt 7.2.19.1
Faktorisiere aus heraus.
Schritt 7.2.19.2
Kürze die gemeinsamen Faktoren.
Schritt 7.2.19.2.1
Faktorisiere aus heraus.
Schritt 7.2.19.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.19.2.3
Forme den Ausdruck um.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl:
Schritt 9