Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4
Vereinfache den Ausdruck.
Schritt 2.4.1
Addiere und .
Schritt 2.4.2
Bringe auf die linke Seite von .
Schritt 2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.8
Mutltipliziere mit .
Schritt 2.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.10
Schreibe als um.
Schritt 2.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.12
Mutltipliziere mit .
Schritt 3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Vereine die Terme
Schritt 4.3.1
Kombiniere und .
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Potenziere mit .
Schritt 4.3.4
Potenziere mit .
Schritt 4.3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.6
Addiere und .
Schritt 4.3.7
Kombiniere und .
Schritt 4.3.8
Mutltipliziere mit .
Schritt 4.3.9
Kombiniere und .
Schritt 4.3.10
Kürze den gemeinsamen Faktor von .
Schritt 4.3.10.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.10.2
Dividiere durch .
Schritt 4.3.11
Kombiniere und .
Schritt 4.3.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4
Stelle die Terme um.