Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Schreibe als um.
Schritt 2.5
Stelle die Terme um.
Schritt 3
Schritt 3.1
Differenziere.
Schritt 3.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2
Berechne .
Schritt 3.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.1.2
Die Ableitung von nach ist .
Schritt 3.2.1.3
Ersetze alle durch .
Schritt 3.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.3
Schreibe als um.
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.3
Vereinfache.
Schritt 3.3.1
Wende das Distributivgesetz an.
Schritt 3.3.2
Addiere und .
Schritt 3.3.3
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Vereinfache die linke Seite.
Schritt 5.1.1
Stelle die Faktoren in um.
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Stelle die Faktoren in um.
Schritt 5.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4
Addiere zu beiden Seiten der Gleichung.
Schritt 5.5
Faktorisiere aus heraus.
Schritt 5.5.1
Faktorisiere aus heraus.
Schritt 5.5.2
Faktorisiere aus heraus.
Schritt 5.5.3
Faktorisiere aus heraus.
Schritt 5.6
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.6.1
Teile jeden Ausdruck in durch .
Schritt 5.6.2
Vereinfache die linke Seite.
Schritt 5.6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.6.2.1.2
Dividiere durch .
Schritt 5.6.3
Vereinfache die rechte Seite.
Schritt 5.6.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Ersetze durch .