Analysis Beispiele

Berechne das Integral Integral über x^2e^(-3x) nach x
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Kombiniere und .
Schritt 4.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kombiniere und .
Schritt 6.3
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Mutltipliziere mit .
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Differenziere .
Schritt 10.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 10.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 11.2
Kombiniere und .
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Mutltipliziere mit .
Schritt 14.2
Mutltipliziere mit .
Schritt 15
Das Integral von nach ist .
Schritt 16
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Schreibe als um.
Schritt 16.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.1
Kombiniere und .
Schritt 16.2.2
Kombiniere und .
Schritt 16.2.3
Kombiniere und .
Schritt 16.2.4
Kombiniere und .
Schritt 16.2.5
Kombiniere und .
Schritt 16.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 16.2.7
Kombiniere und .
Schritt 16.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 16.2.9
Kombiniere und .
Schritt 16.2.10
Mutltipliziere mit .
Schritt 16.2.11
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.11.1
Faktorisiere aus heraus.
Schritt 16.2.11.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.11.2.1
Faktorisiere aus heraus.
Schritt 16.2.11.2.2
Kürze den gemeinsamen Faktor.
Schritt 16.2.11.2.3
Forme den Ausdruck um.
Schritt 16.2.11.2.4
Dividiere durch .
Schritt 17
Ersetze alle durch .
Schritt 18
Stelle die Terme um.