Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Kombiniere und .
Schritt 5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kombiniere und .
Schritt 6.3
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Schritt 11.1
Mutltipliziere mit .
Schritt 11.2
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Schritt 13.1
Schreibe als um.
Schritt 13.2
Vereinfache.
Schritt 13.2.1
Kombiniere und .
Schritt 13.2.2
Kombiniere und .
Schritt 13.2.3
Kombiniere und .
Schritt 13.2.4
Kombiniere und .
Schritt 13.2.5
Kombiniere und .
Schritt 13.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 13.2.7
Kombiniere und .
Schritt 13.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 13.2.9
Mutltipliziere mit .
Schritt 13.2.10
Kombiniere und .
Schritt 13.2.11
Mutltipliziere mit .
Schritt 13.2.12
Kürze den gemeinsamen Teiler von und .
Schritt 13.2.12.1
Faktorisiere aus heraus.
Schritt 13.2.12.2
Kürze die gemeinsamen Faktoren.
Schritt 13.2.12.2.1
Faktorisiere aus heraus.
Schritt 13.2.12.2.2
Kürze den gemeinsamen Faktor.
Schritt 13.2.12.2.3
Forme den Ausdruck um.
Schritt 13.2.12.2.4
Dividiere durch .
Schritt 14
Ersetze alle durch .
Schritt 15
Stelle die Terme um.