Analysis Beispiele

Berechne den Grenzwert Limes von ( Quadratwurzel von x-x^2)/(1- Quadratwurzel von x) für x gegen 1
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.2.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1.1
Jede Wurzel von ist .
Schritt 1.1.2.5.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.1.2.5.1.3
Mutltipliziere mit .
Schritt 1.1.2.5.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.1.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1.1
Jede Wurzel von ist .
Schritt 1.1.3.3.1.2
Mutltipliziere mit .
Schritt 1.1.3.3.2
Subtrahiere von .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.3.4
Kombiniere und .
Schritt 1.3.3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.6.1
Mutltipliziere mit .
Schritt 1.3.3.6.2
Subtrahiere von .
Schritt 1.3.3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.3
Mutltipliziere mit .
Schritt 1.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.3.5.2
Mutltipliziere mit .
Schritt 1.3.5.3
Stelle die Terme um.
Schritt 1.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.8
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.1
Benutze , um als neu zu schreiben.
Schritt 1.3.8.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.8.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.8.5
Kombiniere und .
Schritt 1.3.8.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.8.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.7.1
Mutltipliziere mit .
Schritt 1.3.8.7.2
Subtrahiere von .
Schritt 1.3.8.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3.8.9
Kombiniere und .
Schritt 1.3.8.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3.9
Subtrahiere von .
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Wandle die gebrochene Exponenten in Wurzelausdrücke um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Schreibe als um.
Schritt 1.5.2
Schreibe als um.
Schritt 1.6
Mutltipliziere mit .
Schritt 1.7
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.7.2
Kombiniere und .
Schritt 1.7.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.7
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.8
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 2.9
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.10
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 2.11
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.3
Forme den Ausdruck um.
Schritt 4.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Jede Wurzel von ist .
Schritt 4.2.3
Mutltipliziere mit .
Schritt 4.2.4
Addiere und .
Schritt 4.3
Jede Wurzel von ist .
Schritt 4.4
Dividiere durch .
Schritt 4.5
Mutltipliziere mit .
Schritt 4.6
Jede Wurzel von ist .
Schritt 4.7
Mutltipliziere mit .