Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Schritt 3.1
Multipliziere die Exponenten in .
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze den gemeinsamen Faktor.
Schritt 6.3
Forme den Ausdruck um.
Schritt 7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 10
Schritt 10.1
Addiere und .
Schritt 10.2
Mutltipliziere mit .
Schritt 11
Potenziere mit .
Schritt 12
Potenziere mit .
Schritt 13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 14
Addiere und .
Schritt 15
Subtrahiere von .
Schritt 16
Kombiniere und .
Schritt 17
Schritt 17.1
Wende das Distributivgesetz an.
Schritt 17.2
Vereinfache jeden Term.
Schritt 17.2.1
Mutltipliziere mit .
Schritt 17.2.2
Mutltipliziere mit .
Schritt 17.3
Faktorisiere aus heraus.
Schritt 17.3.1
Faktorisiere aus heraus.
Schritt 17.3.2
Faktorisiere aus heraus.
Schritt 17.3.3
Faktorisiere aus heraus.
Schritt 17.4
Faktorisiere aus heraus.
Schritt 17.5
Schreibe als um.
Schritt 17.6
Faktorisiere aus heraus.
Schritt 17.7
Schreibe als um.
Schritt 17.8
Ziehe das Minuszeichen vor den Bruch.