Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3
Ersetze alle durch .
Schritt 4
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Vereinfache den Ausdruck.
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Bringe auf die linke Seite von .
Schritt 4.3.3
Schreibe als um.
Schritt 5
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Kombiniere und .
Schritt 5.3
Kombiniere und .