Analysis Beispiele

Berechne das Integral Integral über z/(e^z) nach z
Schritt 1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2
Bringe auf die linke Seite von .
Schritt 1.2.3
Schreibe als um.
Schritt 2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Das Integral von nach ist .
Schritt 8
Schreibe als um.
Schritt 9
Ersetze alle durch .