Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Benutze , um als neu zu schreiben.
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4
Kombiniere und .
Schritt 1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.6
Vereinfache den Zähler.
Schritt 1.6.1
Mutltipliziere mit .
Schritt 1.6.2
Subtrahiere von .
Schritt 1.7
Kombiniere Brüche.
Schritt 1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.7.2
Kombiniere und .
Schritt 1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.11
Vereinfache den Ausdruck.
Schritt 1.11.1
Addiere und .
Schritt 1.11.2
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Faktorregel.
Schritt 2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Multipliziere die Exponenten in .
Schritt 2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2.2
Kombiniere und .
Schritt 2.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Kombiniere Brüche.
Schritt 2.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.7.2
Kombiniere und .
Schritt 2.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.7.4
Mutltipliziere mit .
Schritt 2.7.5
Mutltipliziere mit .
Schritt 2.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.11
Vereinfache den Ausdruck.
Schritt 2.11.1
Addiere und .
Schritt 2.11.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Faktorregel.
Schritt 3.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 3.1.2.1
Schreibe als um.
Schritt 3.1.2.2
Multipliziere die Exponenten in .
Schritt 3.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2.2.2
Multipliziere .
Schritt 3.1.2.2.2.1
Kombiniere und .
Schritt 3.1.2.2.2.2
Mutltipliziere mit .
Schritt 3.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Schritt 3.6.1
Mutltipliziere mit .
Schritt 3.6.2
Subtrahiere von .
Schritt 3.7
Kombiniere Brüche.
Schritt 3.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.7.2
Kombiniere und .
Schritt 3.7.3
Vereinfache den Ausdruck.
Schritt 3.7.3.1
Bringe auf die linke Seite von .
Schritt 3.7.3.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.7.3.3
Mutltipliziere mit .
Schritt 3.7.3.4
Mutltipliziere mit .
Schritt 3.7.4
Mutltipliziere mit .
Schritt 3.7.5
Mutltipliziere mit .
Schritt 3.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.11
Vereinfache den Ausdruck.
Schritt 3.11.1
Addiere und .
Schritt 3.11.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Differenziere unter Anwendung der Faktorregel.
Schritt 4.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 4.1.2.1
Schreibe als um.
Schritt 4.1.2.2
Multipliziere die Exponenten in .
Schritt 4.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.2.2.2
Multipliziere .
Schritt 4.1.2.2.2.1
Kombiniere und .
Schritt 4.1.2.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3
Ersetze alle durch .
Schritt 4.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4
Kombiniere und .
Schritt 4.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.6
Vereinfache den Zähler.
Schritt 4.6.1
Mutltipliziere mit .
Schritt 4.6.2
Subtrahiere von .
Schritt 4.7
Kombiniere Brüche.
Schritt 4.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.7.2
Kombiniere und .
Schritt 4.7.3
Vereinfache den Ausdruck.
Schritt 4.7.3.1
Bringe auf die linke Seite von .
Schritt 4.7.3.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.7.4
Mutltipliziere mit .
Schritt 4.7.5
Multipliziere.
Schritt 4.7.5.1
Mutltipliziere mit .
Schritt 4.7.5.2
Mutltipliziere mit .
Schritt 4.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.11
Vereinfache den Ausdruck.
Schritt 4.11.1
Addiere und .
Schritt 4.11.2
Mutltipliziere mit .