Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Schreibe als um.
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.3
Ersetze alle durch .
Schritt 2.3.2
Schreibe als um.
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Stelle die Terme um.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Schreibe als um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Faktorisiere aus heraus.
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Faktorisiere aus heraus.
Schritt 5.3.3
Faktorisiere aus heraus.
Schritt 5.3.4
Faktorisiere aus heraus.
Schritt 5.3.5
Faktorisiere aus heraus.
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Schritt 5.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Ersetze durch .